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GEODESICS ON AN EQUIPOTENTTIAL SURFACE QF REVOLUTIONl

20647 A

Abstract.--An equipotential surface of revolution is propagated as a
reference surface for a worldwide geodetic system. A trigonometry--using
geodesics as surface curves--is briefly outlined, and the geodetic appli-
cations are given in the most important cases. The developments are valid
for any length of the geodesics custamarily used for "long lines" on an
ellipsold of revolution.,

walter Kohnlein®

The figure of the Earth is usually identified with the geometrical
structure of a certain equipotential surface of the gravity field, called
the geoid. In geodesy this geoid is used as a reference surface for geo-
detic measurements, but in numerical computations, an easier manipulating
surface such as a sphere or an ellipsoid of revolution, is usually sub-
stituted for the geoid. Hence these latter reference surfaces must ful-
£111 two major conditions:

l) They must represent the mean structure of the geoid in an area
under consideration as well as possible, and

2) They must allow a simple computation procedure when geodesics
are used as surface curves.

In this paper we investigate a reference surface that not only ful-
f111ls the above conditions but also shows some characteristics that make
1t especially suitable for vworldwide geodetic systems. Hothore

]‘l'his work was supported in part by grant NsG 87-60 from the National
Aeronauties and Space Administration.-

2Sm:l.i:,hsonfl.a.n Astrophysical Observa.tbry, Cambridge, Massachusetts.
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A. The Equipotential Surface of Revolution

We assume for the moment that our surface of revolution is zonewise
monotonous and steadily curved. Then the behavior of a geodesic is de-
scribed by Clairaut's equation

p sin A = const., (1)

which means that in each point of the surface the product of the parallel
radius p and the sine of the azimuth A of a geodesic is constant and equal
along its whole run. Iet us specialize the radius of the revolution sur-
face to be the curve locus in which the mean of the geopotential--around
each latitude circle--becomes identical with the potential of the geoid.
Then the obtained equipotential surface of revolution represents the mean
structure of the whole geoid, and the radii toward the north and south
poles become equal to the corresponding radii of the geoid if we put the
coordinate origin into the gravity center of the Earth.

Approximating the geopotential function of the gravity field of the
Earth in the following form:

22
0
ér coseﬂ (2)

¥ ok
n
=B Ea) .
=E!1 4+ & A +
U =2 {l EJ (r (Cnm cos m\ + 5, 8inm )an(sin B{}
n=2 m=0

with
a = equatorial (meximum parallel) radius

= product of the mass of the Earth with the gravitational
constant

W = angular velocity of the Earth

r = geocentric radius, i.e., the distance from the gravity
center to a point in the free space

= geocentric latitude, i.e., the complement of the angle
that is included by r and the rotation axis of the Earth

A = longitude, i.e., the angle between a meridian plane through
r and an arbitrarily fixed meridian plane (Greenwich)

C

am? Snm==harmonic coefficlents

an==Legendre's associated function




T R

and

" n & Pn(sin B)
an(s:\.n B) =cos B m— (3)
when
3 (2n-2t)! [n t n-2t
1 -2t)! , n-
P_(sin B) "ann! z (m 5077 (t)(-l) sin B (4)
£=0
with

then we obtain the mean potential along a latitude circle

2m N n n
T = % f{%[}_ + Z 2(%) (cnm cos mh + Sn.m sin mK)an(sin 3)]
A=0 n= m=0
2
+ uﬁ; cosgﬂ aar , (5)

or by putting

U =V = const.

P =P (legendre's coefficient)
no n

N

n 032 2

v =§{1 + 2(%) c,, P (sin s)}+ = cos®B . (6)
n=p

This last equation already includes our reference surface in question.
To pick it out among the other equipotential surfaces we have to give one
of the following:

1) its geopotential V; or

2) the gravity either in the equator or in a certain latitude; or
3) the (parallel) radius in the equator or in a certain latitude.
The values of the gravity or the (parallel) radius are understood here as

mean values along a certain latitude circle according to our previous
definition of the equipotentilal surface of revolution.
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For practical reasons the first point must be excluded because the
potential of the geold cannot be directly measured on its surface. But
the second and third possibility can be well realized either by pendulum
measurements or by distance and angle measurements along the equator or a
latitude circle for example.

In the next section we treat point 3 first to the extent that hand-
ling of points 2 and 3 becomes equal for further developments. In this
stage we outline briefly the procedure when the gravity is given.

B. Equation of the Meridian Curve

A revolution surface is completely described by its meridian curve.
T m
Because equation (6) is continuous in r within the interval - 5 <ps= 5
we can always uniformly approximate the meridian curve--in the same inter-
val--by polynomials (Weierstrass's approximation theorem).

1, Equation of the meridian curve in polar coordinates, with the origin
in the gravity center.

We construet the meridian
) curve in the explicit form:

N , r =x(f) (1)
L

= A

° / and develop (7) formally into a
S r ,/ polynomial of degree M:*

- /

o /

- B f—

gl —B AN M

>
\
©

|

r=all+ ) r siniB . (8)

i=0

Introducing (8) together with (4)
into (6) in the slightly changed

S . form:
v Fig. 1
N
WP n .
r =% 1+ —p (1-sin°B) + } (%) Co Bulsin B)p (9)
n=2

we obtain the unknown coefficients ry by comparison of the terms having

the same power of sin B. This can be simplified by making use of a series

*—
M depends on the intended numerical accuracy.

e




development

® M .
j J J i
rY =a E.(k) r, sin 8 , (10)
=0 i-0
which is convergent for
-l<sin BP=s+1
and any value of j. In general we obtain
T, =.ri(§),r1,...ri_1; V) (11)

or, for example, the first few terms for N =4, M = 8 and an accuracy of
about ¥ digits:

[ " 3 Cx .3\ \ 210
\rmzfg(l+ﬁ"T+§cuo"1+"‘)slo
r1=--32-c20‘—;§/[ -%(3“?73‘3-+02J]+...

(B -2 e /[ & (o - Bl
Ty o= e

we may mention that in (11) the potential V is still unknown. A method of
computation is given in section 3 .

We now discuss the assumptions made in chapter A about the monotony
and curvature of the surface of revolution. From equation (8) follows
that, in geodetic application, the meridian curve is monotonous between

m

€£B s
062

and
n
- _<Bs
250

while the curvature is steady over the whole interval

(12)



The last result derives from the convergence and steadiness of the second
derivatives of (8), taken along the meridian curve. As a result the dif-
ferential equations of the geodesic in chapter C can be integrated on the
whole surface without any restrictions.

2. The geographic latitude B as a function of the geocentric latitude B,
and vice versa.

The relation in question
sin B = sin B (sin B) (13)
can be easily derived from figure 1:

. dr
r sin B 36 ©oS B

sin B = V;§-+(dr ) ) (lh)
3F)
which leads, together with
M
%% =a cos B E_i ry sinl-lﬁ (15)
i=1
and 5 _% © .
2 dr 1 -5 .k
[r +(d—)J == z (E)D , (D <<1) (16)
k=0
wherein _ _
M . M 5
D =2 Er sin" B + Er sin™ B
i i
i=0 i=0
N 1-1) 2
+(1-sw®)| ) 1r, sl (17)
i=
to the equation o
sin B =sin B + E, bi sin' B . (18)
i=0
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Because the power series in sin P is convergent in the interval

m m
- —s Bs -
2 P 2

(it is also absolutely and uniformly convergent therein) the sum of the
coefficients bi is zero or, in detail:

o’
[N

"

(o]

(19)

b2i+1 =0 .

[=N e e
W~J18 w>~18 >~ 8
o o o
o’
n
|..l
1t
O

The last two results can be derived from (18), which is valid for positive
and negative values of the geocentric latitude.

As an example we mention again the explicit expressions of the first
few coefficients b

i
bo =-I‘l + cee
bl S - &2 + LR R )c1 X

2

= - —— - + + LN )

b, 1 3r3 + 5 (21-2 1) ry = (20)
with

(XONO)

_ 2
X2 —21’2 +)-|-1'2 + e



The geocentric latitude P can be explicitly computed as a function of

the geographic latitude B by inversion of equation (18):

o]

. . .1
sin B =sin B + z c; sin” B .

i=0

This series is convergent within the interval (Knopp, 1922)

Z c, =0
1

1=0

EJ ¢py =0
1=0

[=]

2 Cos 41 "
1=0

c; =¢ (co, Cq ees Cy_
or
= = +a e o
0 7 ™o
b
1
c = = +. « o
1 l+bl
¢, =~ == (b, +2bc, +3D
2 l+bl 2 271
C3 e . .

[¢]

30

) + .

(22)

(23)

(24)

(25)




If we put B = O in equation (22), we obtain the geocentric latitude
Be for the equatorial curve

sin 8 =c . (26)
€ 0

This result can be interpreted as a displacement of the gravity center of
the equipotential surface of revolution relative to the equatorial plane.
The distance in direction of the axis of rotation is therefore:

aco

,=athe =ﬁ' (27)
-c

0

3. The potential of the revolution surface, when the equatorial
(parallel) radius is known.

All the previous calculations depend in one way or another on the
not -yet -known ggopoter'rbig.l V. This value can be computed with the help
of equations (6) and (27). Putting B = Be we obtain

[ S a a wzri 2
& e— + =l

' r 1 i(re) Coo Pn(sin Be) + —— cos Be (28)

n=2
with
a a
T, = = . (29)
e cos Be ,\/l_gg

The only unknown in the above equation is now the geopotential in question.
For numerical computations we obtain it with an accuracy up to 10 digits:

" P Coo | 3 *
v=_1+ o -T+8C)-l-o+'.. (N=)+)- (30)

a

An explicit solution of any desired accuracy can be obtained by
inserting (29) into equation (8):

©

< LA e e

i=0 i

i
r., ¢

S (31)
0

M~ =l

il

¥by numerical iteration we may get any accurcy.

-Q-



and developing (31) into a power series of %% :

1= ;;lv& (5;)1 . (32)

An inversion of (32) leads to the value

i=§
Va Yy (33)
and hence to the geopotential V

1
Z“i
i=0
4. Equation of the meridian curve when the gravity is known.

v==E
a

The procedure is very similar to those discussed in the previous
sections. Starting from equation (6) we obtain by partial differentiations
the gravity value g in the geocentric latitude B:

2 272
1 2
e = lorea vl <[(2)°+ L (2] (35)
r
when _
3 0 n
é% = - l%. 1+ EJ(n-+1) (%) Co Pn(sin )Y + w2r coseﬁ (36)
r n=2
and _
N . ~
N _u a2 dPn(51n B) P2
R E: (;) Cno ) T Ty s 28 . (37)
n=2




As in section 1 we construct--with the help of equation (35)--an expression

2]

"

[

e

+
M~ =0

Ty siniB (38)

e
It
O

and continue formally up to equation (34). If B 1s called the geographical
latitude in which the gravity g is known, we obtain the corresponding geo-
centric latitude P by:

sin B c; siniB , (39)

|
1
]
E
i
+
N~ 8
|

wherein the coefficients c; are functions of the unknown equatorial radius

a. By introducing equatlon (%9 into (38) and the result into equation
(35) we can compute with B = B the equatorial radius in question. The
other procedures are analogously the same as already described.

5. Transformation of the geocentric equations to the equatorial system.

All the previous equations relate to a coordinate system with its
origin O in the gravity center. As a result there usually appears a
constant term such as Y bo, Co» which can be removed by a transformation

to the equatorial system:

z,? Z=z+n (40)
)
. P=p (k1)
N
with
sin B=2;r ="+ (i)
sin 9 =25 R =VE2 4% (43)

ol 7 o

Inserting (40) and (41) in
equation (8) we obtain, by
observing (42), (43) and

4

Fig. 2

-11-



[+ (2-m2]* =5 ) (ﬁ}(% - 2 sin w)‘j (g)j (1)

(k any number) ,

an expression similar to equation (8) but without a constant term:

R=all+ ) R, sinle] . (45)
1=2

The coefficient Rl of sin ¢ in the above equation also becomes zero,

which can immediately be seen from equation (14). As an example we
mention again the first few expressions of Ri':

2 2
R3=r3+2r22+... (46)
R)_i-—ru"'..-

Corresponding equations can be obtained for (18) and (22) if we
substitute R instead of r in the equations under consideration:

[-<]

sin B = sin ¢ + 2 B, sin'e (47)
i=1
with
b, =0 , ete.
i=1
am o]
sin ¢ =sin B + z Ei siniB (L48)
1=
with

z Ei =0,etc.
i=1

-12-




However, the difference against the former developments is that R is now

an infinite series. Using the following expressions (Ryshik and Gradstein,

1957):

division of power series:

™=
e
»
e

) n, x (49)

'Msg[\/\s

'_l
Il
O

with

[+ [+ o]
k .
E_ m, <t = E_ n, x (k any natural number)
i=0 (50)
with

J
1 2 .
T T -j+i .
n, = o n'j T L (ik - j+1) m, nj-i 3

multiplieation of power series:

i i i
gt ) mt=)
2 ; X m, X oo ox (51)
i=1 i=1 i=1

with

-1
By 7 2 by
1=1

we get the coefficients %i and ¢

i:
bl = -2R2 + .0
by =By t.. (52)
'B = * . L] L]
3



and cl = cl(cl, 02, ""c-_l)
or -
b
8, = - o+
1 "I :
1
b \
~ 2 -~ \
= - + + .. .
¢, T+5; (1 +2¢)) / (53)
;
a = e e e :
3 /

In order to obtain the radius R as a function of the geographic
latitude B, we insert equation (L48) into (L45) and, considering the formula
for substitution of one power series into another (Ryshik and Gradstein,

1957),

@© w [oo]
1 _ E, 1 _ }i P!
z m, y = n, x° with y = ;X (5k)
i=l i=l i=1
whereby .
=4
e R a1
2
= £
ny = Am + 4o, (55)
= 4m +244 Px
n3 3ml 21:1 Sl + 1m3
* L] L] L] . L] L L L ] [ ) ,
we get
® L, =8,
a i + 1 y=sing
R=a 1+ 2 R, sin™ B with:{m, =R, (56)
i i i = a4
. A Xx = sin B o
i=2 n. =R,
i i

According to our former equations the interval of convergence is
again:

n
- <B <

T
2

and
S Tsps<l

2 2

-1k -




6. The parallel radius p as a function of the geographic latitude B.

From figure 2 we learn
2
i

ﬁi sin"B| (1 -sineCP) . (57)

p2 =R2 cos2<P = a2 1+

~-18

i=2

Hence with the help of (U48) together with (50) and (51) we obtain the
expression in question

B = -+ Z 1
(a) 1 P, sin™ B (58)
i=2
with ® ® ®
==1; = -1 =
2 by =7 }- Ppy =15 2 Poi+1 T 00
i=2 i=1 i=1

and, for example,

LR R
= 2 2
p2 = (232-1)[1 + (1 + +

1-312 1-2R2 ttt
1+2R
3 2 2
p=2R{1_____(83+ _ )}+ (59)
3 3 (1-25{2)2 2 1-2,
ph = . * .
A slight change of (58) leads to
q =N1 -(2)2 =sin B (1 + Z Qy sin' B (60)
i=0

-]

D 8y =0 ) Gy T ) Gy =0 -
i=

0 - i=0 i=0

with

-15=



The first few coefficients are

1 2 1
H1ep) - 3(140,)° - x(1+p)° - ...

9o
q = -3p, - %(1+P2)P3 m e e (61)

3
a4 = -

By inversion of (60) we obtain the geographic latitude B as a
function of q 5

(2]

hY
+
gin B =+ q I:l + z ei(iq) i] (- northern hemisphere) (62)

southern hemisphere

1=0
with © o o
) €1 =05 ) epy =05 ) ey =0
1=0 1=0 1=0
when

ey = ei(eo,el co e ei-l)

or
= - +q ) + . ..
e, qqo/(l qo)
=1
e, p2/(l+qo) o ’ (63)
82 = e e e

and with (49) we finally get the expression:

z . - z . o1
sii B =\/'l%§)2 {1 + }:l (-1)° Hoi (5)21] * izl(—l) v2i(§) (64)

/ + northern hemisphere
- southern hemisphere s

16w




wherein

u2=x2+2xh+3x6+)+x8+... )
uh:xu+3x6+6x8+.. e

u_6=o-o

v2=x3+2x5+3x7+. e e

vy, =X +t3x,+. . ? (65)
L~ TN

v6—oc-

é . . . . . . . . .

X, =-e2+2eoe2 -3e(2)e2+ .« o e

X, =€, +t2e_ +2e.+...

) 03 iz J

In this form equation (64) will be used for the integration of the dif-
ferential equations in the next chapter. The interval of convergence of
equations (58) and (62) is

- =SB <

Mol o

and

OSqSl .

-17-




C. The Fundamental Formulasof a Geodesic on an Equipotential Surface
of Revolution.

1. Differential equations of the geodesic.

In this section we briefly outline the derivations of the differential
equations of geodesics on surfaces of revolution (Kohnlein, 1962).

Starting with the integral formula of Gauss-Bonnet:

[ ") ar +fkg(s) as =2, (66)
7, R

wherein

4
I

surface parameters

Gaussian curvature in a surface point

surface element

simply connected region on the surface

) %5 B =g

= boundary curve of 35; steadily curved and without
double points

0
]

curve length as a parameter of.93

o
]

geodesic curvature of R as a function of the curve
& length ,

we obtain for a differential triangle

lim € k_ as =21 . - (67)
A

According to figure 3, we introduce on the surface of revolution a coor-
dinate system B,L--with B as the geographic latitude and L as the geo-
graphic longitude--thereby calling M the meridian radius and N the radius
of the prime vertical. The relation between p and N is given by the

-18«




l theorem of Meusnier:

p =Ncos B . (68)

We are considering now a geodesic that
includes with the meridian in point 1
the angle A, (azimuth). In point 2 we

compute the increase of the azimuth
angle dA = A, - A; from (67).

m ki
+ — <+ - — =
k, P AL+ 5+ T-A 5 A, =2m (69)

Axis of revolution

or
Fig. 3 kg pdL =dA (70)

Because the curves d‘sl2 and d523 have vanishing geodesic curvature we

obtain k for the perallel radius with the help of (66):

-~ -——aa 2=

2n /2
fkgde—en- f cos B dB dL (71)
p =const, 0 B
or
sin B
k = . 2
;= (12)

Introducing (72) into (70) we get the first differential equation of a
geodesic on surfaces of revolution:

dA
it =sgin B . (73)

The well-known equation of Clairaut can be derived from the triangle
1-2-3 in figure 3.

ctg A =—= , (74)

and with (73)

dA _Msin BdB _ _dp
>y - > - (75)

-19-



Integration of (75)

A 1Y
2 2
T S dp (76)
tg A P
Ay Py
finally leads to the expression
P, sin A, =p, sin A, =p, sin A, =p . (77)

The product of the parallel radius 12 and the sine of the azimuth Ai of a

geodesic is constant in any point of a revolution surface and equal to the
minimal parallel radius P (Am =.2‘I ).

The second differential equation can be derived again from figure 3 :

. _pdL
sin A = 5=, (78)
or with (73)
ds _ P
dA sin AsinB ° (79)

2. Integration of the differential equations.

In order to get the difference AL of the geographic longitude of a
geodesic between two points--with parallel radii pl and p2, respectively--
we differentiate (77),

b
d.A=-——£—d.P

P tP

, (80)

and introduce it imto (73)

P
2
= B dP
AL =1,.-1 = -p J\ (81’)
2 1 m A ’p§+p§
1

and similarly we proceed to obtain the length of the geodesic between the
said points

Po -1
5 = _y D % dp . (82)
Pl /\/p - pm

-20-




Before we make use of the results of equation (64), we introduce for sake
of simplification the equatorial radius & as the unit of length. The
formulas with the angle arguments remain unchanged while the distances
will be reduced to the said unit.

For equation (8l1) we now obtain:

p [+ -]
2 . .
= - = o dp 2 _ 1 21
AL =1L, L 13 j‘ {1+ (-1) uzip]
P

pV(1- 2)(132-5:‘:“5

1 i=1
P, © (83)
dp 2i
:‘:j z (‘l) V21 P )
pl P "pm i=
and similarly/,
( rl\)2 an [ c 9;'
5=- b e , 1+ (-1)" u,, P~
iL)pl V(1-57)(p"-52) l_ ié 21 F )
(84)

The positive sign is valid for the northern hemisphere, and the negative
sign is needed for the southern hemisphere.

If we use the abbreviations
K = (l-pa)(pz-Pi) (85)
k=(p - 20) (86)

we can compute the above integrals by the recurrence formulas-

2t+1 2(t-1) 2t-1 2t -3
P P 2t-1 261 p t-1 P
f dp = - = VK + 5= l+p)f dp-——pf—-dp(87)
k 2t 2t ( m “I]=K v m) g

-21-



with

2 2
2p” - (1 +pm)

}o

P 1
— dp = - 5 arc cos
J VK 1l - pi
4 1 (l+p§]) p° - 2p
L=-2—arc cos 5 5
K P p(1-p)
and.
ot +1 S gy bt E .
m =.Z (1) 5(t-1)+1 P
1:
with
D
_d_ =\/E
[
3
P 1 3 2
P_4p =2 (V&) + K
f&ap 2Rl
2 ap =1 (/B + 208 VB + B R
VK 5 3 m m

p'
Ik

dp =% vE) +%p§ (VE)? + p; (VE)® + pg V/k

. . . . . . ] .

(88)

(89)

(90)

(91)

If the geographic latitude B is for some reason preferred as the variable
instead of p, then the above formulas can easily be changed with the help

of equation (58).

3. length of a meridian arc.

The length of the meridian arc between two points with the parallel
radii Py and Py respectively follows from (84) by putting P = 0. 1In this

special case we obtain:

Y-




f J;_p-[“ }(-1) u, 21J

(92)
Py o
) o1
+ f Z(-l)1 Vo P *| ap,
p1 i=1l

with the recurrence formulas

2t 2t-1 2n-2
fp dp=-p Vl-p2+£fp dp , (93)

Jl-p 2t 2t /5:52
fdp _ -. arc cos p , {(o%)
JhZ
=P
and
2t+1
2t - P

We notice that G
radius.

12 is also obtained in the length unit of the equatorial

k., Excess of a geodesic polar triangle.

The excess of a geodesic polar triangle is equal to the total curva-
ture of its surface F. It can be computed with the help of (66). Assuming
that one corner of the geodesic triangle (polar triangle) coincides with
a surface pole, we obtain with equation (83):

£=[[Kar =[] cos B aBdL

L2 L
= 4 I (1 - sin B) 4L (96)
l
P P
_ 2 sin de+p fz 1 dp
J -p2 . BFme P
1
= - -+ -
L2 L Al A2



5. BSurface area of a geodeslc polar triangle.

If bris again the region within a polar triangle, then we get its
aresa

F=HMP5-B<1L='H51£dedL’ (97)
& L

and with the help of (64)

+1 +
F =_'/:/1-1— 2 (-l)iu p21 + z(-l)iv p21 1 dp dL
h2e L 21 21
LH-UV-F i=0 i=1

> 1 : pi+3]
=[ Eo 2 uEi(?]:) E%%)Tl:((Le - Ll) (98)
1=0 J

=0
L2cn i 1 o
Y ) G s, Ty, By
- 2ilJ 2(i-j) +1 21 2(1+1) ’
Yli=05=0 i=1
1
(uo 81) .
Introducing the expression--see equations (73) and (80)-~
b
dA m 1l
dL = — = - —— dp (99)
sin B pV%Q-pi sin B

[o.2]

b 3 3 :
- | R ) (D, BT ) (), pzi] ap
pv%2_p2 Vi_p2 21 2i

m i=0 =1

(uo =1)

2l




we finally obtain:

=[§ i % (3] %—ﬁji?;i]“‘

i=0Jj=0
@ i <, 1
2.1-j+ 5 .
i} (1-p°) 2 21+3+1
- p 5‘ ) ) (-1) (100)
;,/ 2 02 2t (J) 2(1-3) +1
Pnli=0 J=0 .
L2(141) =
21 2. i 21
- - + -
2(1) 212(1+1) ’\/lpg 2(1) Yo (-1)7 vy P,
! i=1
wherein the integrals can be computed with the recurrence formulas:
2t +1 2t 2t-1
+ + -
pra_ 2 26 +1 m m2t+1l p2_ u2]
with D
f & -2 arcsin 2 . (102)
;;sz_ 2 Py P

m
See also formulas (87) to (91).

The area of either the northern or the southern hemisphere of the
equipotential surface of revolution can be computed by equating
Py =P =P = 1:

- \21+)
2 2 Yoy (3) é(izjj'ﬁ
1=0 3=0
(103)

2:1. + north. hem.
* 2(-1) A | 2n (- south. hem.)’
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and the area of the whole equipotential surface is therefore

1 . 21 +J
Fo=hn 2 Z "}2i(3) '(2'(-1_23;-*_1 (104)

1=0 j=0

The results are obtained in the scale unit of the second power of
the equatorial radius.
In sections 4 and 5 we have considered
Pole only a geodeslic polar triangle. To obtain
corresponding results for any geodesic
triangle or polygon on the revolution
surface, we have only to dissolve the said
figures into polar triangles as shown for
a triangle in figure 5.

Fig. 5
D. Application in Geodesy

1. The direct and inverse geodetic problem.

Most of the geodetic computation procedures in triangulation systems
can be reduced to two major problems, the direct geodetic problem and the
inverse geodetic problem, which may be interpreted as special cases of co-
ordinate transformations within two geodesic polar coordinate systems
(Graf, 1955; Kohnlein, 1962; Kohnlein, 1963).

1.1. The direct geodetié¢ problems:

Assuming that we know the geographic
latitude Bl and longitude L1 of point 1, then

we can compute the coordinates BE’L of point

2
2 if the length of the geodesic 512
and its azimuth Al in point 1 are given.
Solution: The minimal parallel radius pm

can be obtained from equation (77) with
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with the nelp of (58);

p, =Py sin A, . (105)
If we write equation (84) in the shortened form
515 =815 (P1sPosP ) 5 (106)
then we find the unknown parallel radius P, by developing (106) in a
Taylor series of 5p2
a's
= - _ 1 12 i
5812 = 512 512 = it —-a—p-i— (6P2) 2 (107)
i=1 2
wherein
6p2 is the difference of a purely spherically computed parallel
radine P, and its actual value p,_;:
r2 :2\
(108)
- [2 2]5)
= - - -+ .
(p2 [Il (V1 Py COS 8,5 * Py sin s,, cos Al) ;

s.. is the distance computed with Py §2, p and (84), and

s

}2 are the partial derivatives also computed with the
ap2 preliminary value P, -

An inversion of equation (107) leads to
ép, = 2 a asi (109)
2 i 12 ?

i=

and hence to

P, =§2 + 8p, (110)
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or, with (62), to B,, the geographic latitude in question. With the help

of (T7) we obtain the azimuth Ay,

ol

sin A, = — , (111)
2 Py

and finally, with equation (83), the difference AL of the geographic
longitudes, or

If we put 1 =1 in equation (107), we obtain an iterative solution as
described in section 2 (geodesic polygons).

1.2. The inverse geodetic problem:

In this case we know the latitude
and longitude Bl’Ll and. Bg,L2 of points 1

and 2. The problem is to find the azimuth

Al and A2 and. the distance 812 between

the two points.

Solutiocn. After computing pl and p2 with

the help of (58), we develop, similarly
to the previous problem where we used
equation (83),

AL =1,-L; = 0L(py, Py Py) (113)
Fig. 7
into a Taylor series of épm,
- 1 aiAL 1
8A, = AL - AL = 7 —— (% )", (114)
it 1 m
i= apm

WRET®IR 6p is the difference of the purely spherically computed

minimal parallel radius ﬁm and its actual value p_

=284




. 5 (115)
2 2
. 5 1-p]  1-pj \/(l-Pl)(l-Pe )] 3
P =sinAL[sin ML+ + -2 cos AL
m 2 2 P.P
2% 5 12

AL, is the longitude difference computed with pl,pe,i;m and (83),

and
) atar, -~
I are the partial derivatives which are also computed with pm-
9p
m

An inversion of (11l4) leads to the unknown value épm 5
| 8p = E b, (san)t (116)
m i ’
i=1

and hence to the minimal parallel radius

p =D +6& . (117)

- pm
sin Al = _E— (118)
1
and P
sin A, = i)E s (119)
2 _

while the distance 512 can be computed with (84):

312 = 812 (P]_: P2} Pm) . (120)

An iterative procedure--as applied in high-speed computer technique--
is outlined in the next section.




2. Geodesic polygons .

As the direct and inverse geodetic problem has been reduced to a
solution of a geodesic polar triangle, we may treat the cases of coordinate
transformations in geodesic coordinate systems, etec., by reducing them to
the computation of geodesic polygons. For example, a coordinate trans-
formation within two geodesic polar coordinate systems can be solved by
means of a geodesic triangle; similarly, the coordinate transformation
within two oblique or rectangular geodesic coordinate systems can be solved
by geodesic pentagons, etc., etc.,(Kohnlein, 1963).

For computing a geodesic polygon we must have 2n-3 angles 01 and /or

sides s.,.  .--n is the number of the
ii+l

corners--plus two additional para-
meters. These two parameters--azi-
muths or parallel radii etc.,--are
necessary to fix the polygon on the
surface because of the changing
curvature along the meridian curves.
Altogether we have 7 n parameters in
the polygon: n sides Sii+1? n angles

Gi, n parallel radii pi, n minimal

parallel radii p ,» n azimuths
ii+l
. imut s
A11+1’ n azimuths A1+11’ and n values

Byg
(excluding the already known values)
of them we must have 5n +1 indepen-
dent equations, which we write in
the shortened form:

If we like to compute all

ALii+l = ALii+l(pi’ Py 410 Py ) n equations (121)
ii+l
Sy141 = Sig41 (Pyr Pyypp By ) n equations  (122)
ii+l
Pysin Ay, 0 =Dy sin A . =D 2n equations  (123)
ii+l
A =7 - - 3 ! o 3
i (Aii+1 Aii-l) clockwise n equations, (124)

wherein 1 =1, 2, ... nand ntl =1 (succession of the corners clockwise),
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and the polygon equation
n

Z AL11+1 (pi) pi+l, Pm.. ) =0 1 equation . (125)
i=1 i+l

Sometimes it is possible to solve the equations (121)-(125) directly
by introducing the known values and computing in steps the values in

question. But in most cases we cannot proceed in this way. Writing the
above equations in the general form

£(%yeee Xpeee X )

s Xyeen %) = (126)

. e o e o e

1
1
fk(xl... X e xk) =0,

we can reduce the problem to the numerical computation of the wvalues
X, (v =1,2 ...k) in (126), which shall be identical with the unknowns

in the geodesic polygon. We develop (126) by using Taylor series and the

0
values Xy T X,” Axv , and break off after the second term:

v

2 .+ Ax %+ ) =¢f (O 2 3 )
fu(xl + Axl... X, e xk k) ST, xl...xv... xk
. (127)
o
+ }‘ (x "'XU"' X )Ax +R =0 (p,, v=1,2 ...k) ,
0
wherein X, are apprroximations of the exact values X and Axv are small

additive corrections. By equating RM = O we can compute approximate
values of Aﬁv'

(A%vyr . llévl" F fx)T (v, =1,2 ...kx) , (128)
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with the square matrix

afl afl. afl
I
of of of
ol = | e a2 | o b Hapl=No,ll, o2
afk Bf f
axl Bx Bxk
wherein 1; wo=A
éu)\ = 0; 1 £ )\ and. the determinant Iap,vl# 0.
Repeating this idea with the improved value
;{v = }ocv + A;{v (instead of ?{U) s (130)

we get from (128) new corrections A)’c'u which lead after some identical

operations to any desired accuracy of the values in question.

From equations(83) and (84) we can easily estimate the influence of
the different terms in the final result. Hence it is sufficient for the
above computation method to use in (129) only the partial derivatives of
the leading first term such as:
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apm = N 5 55 35— = - ETV?? wherein pIn =:pi+1 sin Ai+1i\
-p_V p.-p i ivi
m "i‘m
A
4L, Py 908 43441 . )
= - p =D, sin A,
55 25 m i +1
i (1-19,,,);/1-13L .
2
9s  _ Pn l-pi s _ _ Py " p =p sin A
= + +
%y 12N pPp2 op; Ve m 1 1414
m "i'm
ds cos Aji41 |
= - == P =p, sin A_ >(131)
551 (l-pi)d l-p? m i ii+l
9p dp, P
m J 2 2 i i J 2 2
55— = Vp;- S = - Vpy-p
Ajin 1m Ajia P, 1Tm
ap ) Es =
i+l _ - 2v,. 2 2
TN =Pty Ky = (-p)(ei-m) - )

The length unit is again the semimsjor axis a.

o
In order to obtain approximate values Xy for the polygon, we use the
spheroidal data in spherical formulas. If the condition for a spherical
o
solution is insufficient, we again obtain the values x, by changing

slightly one or several of the data of the geodesic polygon. For numerical
computations it is sufficient to know only good approximations of the

coefficients in the matrix " auv“ . This is especially important for

practical purposes because the matrix has not to be recomputed after each
iteration step.

E. Conclusion.

The zonal harmonics of the gravitational field of the Earth have
been determined until now from the motion of artificial satellites up to
degree nine (twelve) (Izsak, 1963; Kaula, 1963; King-Hele,

1963; Kozai, 1962; etc.). However, the revolution surface derived from
these values does not exactly agree with the revolution surface derived
from the actual geoid. But the degree of approximation is fairly good,
because the oceans, as part of the actual geoid, cover about T0.8 percent
of the Earth's surface. A solution of higher accuracy we can get only if
we have enough gravity measurements uniformly distributed over the whole
world.
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